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Energy transport in the deterministic Q2R cellular automaton is studied. Two 
different types of transport processes are found: a diffusion type and a very 
efficient transport on "highways." The dependence of both types on the energy is 
investigated. 
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1. I N T R O D U C T I O N  

Cellular automata have been used to describe a variety of physical 
phenomena. ~'2) Specifically, the cellular automaton Q2R 3 has been 
proposed ~4'5) to simulate the thermodynamics of the Ising model. Being a 
deterministic automaton, Q2R has an unusual dynamics and at low 
energies a rich structure of clusters of finite periods. 16) Its energy is strictly 
conserved. 

In this paper we study the transport of energy through a cooperative 
system, such as the Ising model, putting special emphasis on the behavior 
close to the critical point. For  this purpose Q2R seems particularly suited 
because it conserves energy and because of its fast implementation on vec- 
tor computers. ~5) Energy transport in the Ising model has already been dis- 
cussed, using other types of microcanonical dynamics~7t; we will see that 
the deterministic nature of Q2R is responsible for a novel kind of transport. 
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We consider a square lattice having an Ising spin a i = +_ 1 on each site. 
Randomly a configuration of a given energy E =  -Y~n, ajai is chosen as 
initial configuration at t = 0. Then at each time unit t the Q2R rule is 
applied. This rule consists of two steps: the lattice is divided into two inter- 
penetrating sublattices A and B. At the first step each spin of A is flipped if 
the sum of the spins of its four nearest neighbors (which lie on sublattice B) 
is zero. At the second step each spin of B is flipped if the sum of the spins 
of its four nearest neighbors is zero. In this way the energy is conserved for 
each site. Depending on the value of E, the system will envolve into a 
situation of finite spontaneous magnetization or not, the critical energy 
being given by Ec = -x/ '2. Since the simulation is microcanonical, the tem- 
perature does not appear directly. It could be calculated via exchange 
probabilities, but we will not do so, but rather express everything in terms 
of energies. 

In order to study energy transport, we consider a finite system of size 
Nh • Nv (see Fig. 1) with periodic boundary conditions in the horizontal 
direction and boundaries of fixed energies E1 on top and E 2 at the bottom. 
The energy E on top (or bottom) is fixed by randomly choosing a fraction 
( E +  2)N~/4 of the outgoing vertical bonds to be "frustrated," i.e., to have 
energy 1, and the rest to have energy - 1 .  During the simulation of one 
sample the location of the frustrated and nonfrustated bonds is kept fixed. 
This is assured by furnishing (if the bond is frustrated) or extracting (if the 
bond is nonfrustrated) an energy of unity each time a site on the top (or 
bottom) line is flipped. So, at each time step an energy AE~ (AE2) is needed 
at the top (and bottom) lines in order to maintain the status quo. If, after 

Nv 

E 

E 
Fig. 1. Sketch of the lattice. F rus t a t ed  bonds  on  the top  and  b o t t o m  are m a r k e d  by wiggles. 

In this case Nh = 13, No = 5, E1 = --10/13, and  E2 = - 2 / 1 3 ,  so tha t  the energy flux goes from 
b o t t o m  to top. 
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some equilibration time, A E  2 = - A E I  = Q, one has a stationary state of 
flux Q. An energy transport coefficient ~ can then be defined through 

~r = Q/Nh dE ( 1 ) 

for E1 = E and E 2 = E + dE. 
We have calculated ~(E) through a numerical simulation. The results 

are presented in the next section and discussed in Section 3. 

2. M E T H O D  A N D  R E S U L T S  

We have simulated the above model on a Cray-XMP using a highly 
vectorized algorithm. (5) We fixed Nh = 128 and varied N v to study finite- 
size effects. For each sample, teq time units were thrown away to reach 
equilibrium out of a total of t, time units. For each energy an average was 
made over M samples, i.e., M independent initial configurations were con- 
sidered. Totally we used about 10 hr of computer time. We used dE = 0.05 
in Eq. (1) and ensured, by also looking at d E =  0.2, 0.1, and 0.025, that our 
values are independent of dE. 

To our surprise, we found two fundamentally different processes con- 
tributing to the energy transport: "diffusion" and "highways." In the first 
process, which is the common one, energy diffuses in an apparently 
stochastic way in both senses and Qd is given by the difference of energy 
that diffuses from bottom to top and the energy that diffuses in the 
opposite sense. Highways, on the contrary, are structures unique to our 
deterministic automaton, and are periodic in time and space and transport 
energy in a highly effective way (one energy unit per time unit). An exam- 
ple for such an highway is given in Fig. 2. These structures do appear after 
some equilibration time (up to several hundred steps for N~ = 20) and con- 
stitute some kind of ordered stationary state, since they are domain walls 
separating regions of plus and minus spins. 

+ - + + 1 |  - + + - 

�9 - e �9 �9 *We 
Fig. 2. Example of a highway for No =4. The period of this structure is two. At each time 
unit, one energy unit goes from top to bottom. Shown for each time unit are the two 
individual steps (update of sublattice A and update of sublattice B). The sublattice B is 
represented by circles and the flux of energy is indicated by the arrows. 
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Fig. 3. 
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Energy transport coefficient t~ d due to diffusion as a function of energy; N~= 20, 
t t = 6000-12,000, /eq ~ q/2, and statistics M = 200-2000. 

The energy transport  coefficient ~ca due to diffusion is only finite in the 
disordered region E,.<E<O, i.e., T,< T< o% and goes to zero when one 
approaches the critical point. In Fig. 3 we see the behavior of K~. It seems 
that ~cj ~ A ( E - E c ) .  This behavior qualitatively coincides with the behavior 
found using other types of Ising dynamics. (71 However, in the ordered 
phase our conductivity is vanishing. 

The energy transport  due to highways strongly depends on the 
probability f o r  building such an highway: f is the number of highways/Nh. 
We obtained the number  of highways by monitoring along the top and 
bot tom lines the energy flux for each site and thus identifying the two end 
points of each highway. The dependence o f f  on energy and system size N~ 
is shown in Fig. 4. We see that there is a maximum number of highways at 
energies of about  -1 .0 ,  i.e., above E c. This maximum is a consequence of 
two competing effects: at too high energies it is not possible to stabilize 
large, ordered domains walls separating regions of plus and minus spins 
that are the highways, and at too low energies the system is not soft 
enough to allow for a large collective modification of spins that is necessary 
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Fig. 4. (a) Fraction fo f  highways as a function of energy for N v = 20. (b) Log log plot off  
against No for E= -1.3. For small systems the statistics is M= 60,000; for No the parameters 
are the same as in Fig. 3. 

to build a highway. We do not think that the curve in Fig. 4a becomes 
singular in the thermodynamic limit at some value of E, but we cannot 
exclude this possibility. The dependence o f f  of the system size as shown in 
Fig. 4b suggests that highways are a finite-size effect and disappear in the 
infinite system with a power law of the system size. This is not astonishing, 
since in larger systems one has to construct larger highways, which is more 
difficult. 

The energy transported by one highway per time unit is, on the 
average, of order unity. For high energies it is a little smaller, since then 
highways also appear  transporting energy in the opposite sense. From 
Figs. 3 and 4 one sees that the contributions to the energy transport  due to 
diffusion and due to highways are of the same order for the system sizes 
considered in this work. It  is interesting to remark that both quantities 
have strong fluctuations, but of different kind. Diffusion fluctuates enor- 
mously in time, and large equilibration times are required to obtain the 
correct value of the diffusion transport. Highways do not require long 
equilibration time, but fluctuate very much from sample to sample, and 
therefore large statistics are needed to get meaningful results. 

3.  C O N C L U S I O N  

We have investigated the nature of energy transport  in an Ising model 
using the Q2R automaton  dynamics. Contrary to some previous work (7) 
using a different dynamics, we only found energy transport  in the dis- 
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ordered phase. In addition to the usual diffusionlike contribution, which 
vanishes linearly at the critical point, we also found ordered structures of 
the stationary state, which we call highways, and which transport  energy 
extremely effectively. These highways are important  in finite systems. 

Two possible physical situations come close to the scenario that we 
found here. One is transport  in a granular medium, where there is also a 
slow diffusion process through the grains and a fast mobility along the 
grain boundaries. The other is heat transport  in a fluid, where in addition 
to diffusion convection can also appear, which is represented by ordered 
structures of the stationary state that are spontaneously formed in the tem- 
perature gradient and in this sense have some similarity to our highways. 
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